Expression of FGF-2 in neural progenitor cells enhances their potential for cellular brain repair in the rodent cortex.
نویسندگان
چکیده
Strategies to enhance the capacity of grafted stem/progenitors cells to generate multipotential, proliferative and migrating pools of cells in the postnatal brain could be crucial for structural repair after brain damage. We investigated whether the over-expression of basic fibroblast growth factor 2 (FGF-2) in neural progenitor cells (NPCs) could provide a robust source of migrating NPCs for tissue repair in the rat cerebral cortex. Using live imaging we provide direct evidence that FGF-2 over-expression significantly enhances the migratory capacity of grafted NPCs in complex 3D structures, such as cortical slices. Furthermore, we show that the migratory as well as proliferative properties of FGF-2 over-expressing NPCs are maintained after in vivo transplantation. Importantly, after transplantation into a neonatal ischaemic cortex, FGF-2 over-expressing NPCs efficiently invade the injured cortex and generate an increased pool of immature neurons available for brain repair. Differentiation of progenitor cells into immature neurons was correlated with a gradual down-regulation of the FGF-2 transgene. These results reveal an important role for FGF-2 in regulating NPCs functions when interacting with the host tissue and offer a potential strategy to generate a robust source of migrating and immature progenitors for repairing a neonatal ischaemic cortex.
منابع مشابه
Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملP50: Selective HCRTR2 Antagonism Increases Embryonic Mouse Cortex Neural Stem Progenitor Cells Proliferation
In multiple sclerosis Oligodendrocytes are obliterated by the immune system. neural stem/ progenitor cells (NS/P Cs) have the capacity to differentiate into mature myelinating oligodendrocytes. In embryonic mouse cortex oligodendrocyte progenitor cells (OPCs) are more abundant than the ganglionic eminence. Doing gene set enrichment analysis using DAVID and Panther websites it was shown that Gpr...
متن کاملThe enhancing effect of electromagnetic field on the expression of Oligodendrocyte transcription factor 1 and 2 (Olig1/2) in the mice cerebral cortex
Olig1 and Olig2, two transcription factors, play regulatory function in the differentiation and specification of oligodendrocyte progenitor cells (OPCs). In this study the effects of electromagnetic fields (EMF) on total protein concentration ( TPC ) and Olig1 and Olig2 expression in the cerebral cortex of mouse was examined. Twenty-one Balb/c mice were separated into three groups: control, EMF...
متن کاملPuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells
Objective(s): Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 130 Pt 11 شماره
صفحات -
تاریخ انتشار 2007